计算机科学与工程学院(网络空间安全学院)


 
导师代码: 20675
导师姓名: 张马路
性    别:
特    称:
职    称: 研究员
学    位: 工学博士学位
属    性: 专职
电子邮件: maluzhang@uestc.edu.cn

学术经历:   2014年-2019年 电子科技大学 计算机科学与工程学院 博士; 2017年-2019年 新加坡国立大学 国家公派博士生; 2019年-2021年 新加坡国立大学 Research Fellow; 2022年-至今 电子科技大学 研究员、博导。

个人简介:   研究领域: 类脑计算、深度学习。

科研项目:   【1】 国家自然科学基金青年科学基金项目,基于深度 Spiking 神经网络的多模态类脑模型研究, 2022-01 至 2024-12,30 万,主持。 【2】中国博士后科学基金(一等资助),2020M680148,具有多模态感知能力的深度 Spiking 神经 网络类脑模型研究,2020-11 至 2022-12,12 万,主持 【3】CCF-海康威视斑头雁基金,基于脉冲神经网络的编码和算法研究,2022-1 至 2023-11,30 万,主持。 【4】之江实验室国际青年人才基金,类脑 Spiking 神经网络模型研究,2021-1 至 2022-1,3 万,在研,主持。 【5】科技创新 2030-“新一代人工智能”重大项目-课题二,2018AAA0100202,神经元和模块功能 特异化研究,2019-07 至 2023-12,154 万,主研。 【6】国家自然科学基金,61976043,具有模块功能特异化性质的新型 Spiking 神经网络模型研究, 2020-01 至 2023-12,64 万,在研,参与。 【7】国家自然科学基金青年基金,61806040,具有时序迁移能力的 Spiking-Transfer learning (脉 冲-迁移学习) 方法研究,2019-01 至 2021-12,20 万,主研。 【8】中央JW 科技委,GF 科技创新特区,2118Y29091A,类脑芯片基础理论xxxx 模型研究,2018- 12 至 2020-12,100 万,主研。

研究成果:   期刊论文: [1]Zhang, Malu, Xiaoling Luo, Jibin Wu, Ammar Belatreche, Siqi Cai, Yang Yang and Haizhou Li,Towards Building Human-Like Sequential Memory using Brain-Inspired Spiking Neural Models,IEEE Transactions on Neural Networks and Learning Systems, 2025. [2]Zhang, Malu, Shuai Wang, Jibin Wu, Wenjie Wei, Dehao Zhang, Zijian Zhou, Siying Wang, Fan Zhang and Yang Yang,Toward Energy-Efficient Spike-Based Deep Reinforcement Learning with Temporal Coding, IEEE Computational Intelligence Magazine,2025. [3]Zhang, Jiqing, Malu Zhang*, Yuanchen Wang, Qianhui Liu, Baocai Yin, Haizhou Li and Xin Yang*. Spiking Neural Networks with Adaptive Membrane Time Constant for Event-Based Tracking. IEEE Transactions on Image Processing, 2025. [4]Pengfei, Sun, De Winne J, Malu Zhang*, Paul Devos, Dick Botteldooren. Delayed knowledge transfer: Cross-modal knowledge transfer from delayed stimulus to EEG for continuous attention detection based on spike-represented EEG signals[J]. Neural Networks, 2025. [5]Zhu, Rui-Jie, Malu Zhang*, Qihang Zhao, Haoyu Deng, Yule Duan and Liang-Jian Deng*. TCJA-SNN: Temporal-channel joint attention for spiking neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2024. [6]Zeng, Dingyi, Yichen Xiao Wanlong Liu, Huilin Du, Enqi Zhang, Dehao Zhang, and Yuchen Wang, Malu Zhang* and Wenyu Chen. Efficient Automatic Modulation Classification in Non-Terrestrial Networks With SNN-Based Transformer[J]. IEEE Internet of Things Journal, 2024. [7]Sun, Pengfei, Jibin Wu, Malu Zhang*, Paul Devos and Dick Botteldooren. Delay learning based on temporal coding in Spiking Neural Networks[J]. Neural Networks, 2024, 180: 106678. [8]Xie, Xiurui, Yansong Chua, Guisong Liu*, Malu Zhang*, Guangchun Luo, and Huajin Tang. Event-Driven Spiking Learning Algorithm Using Aggregated Labels[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. [9]Luo, Xiaoling, Hong Qu*, Yuchen Wang, Zhang Yi, Jilun Zhang, and Malu Zhang*. Supervised learning in multilayer spiking neural networks with spike temporal error backpropagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. [10]Malu Zhang, Jiadong Wang, Jibin Wu, Ammar Belatreche, Burin Amornpaisannon, Zhixuan Zhang, Venkata Pavan Kumar Miriyala et al. Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 33(5): 1947-1958. [11]Wu, Jibin, Chenglin Xu, Xiao Han, Daquan Zhou, Malu Zhang*, Haizhou Li, and Kay Chen Tan. Progressive tandem learning for pattern recognition with deep spiking neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(11): 7824-7840. [12]Pan, Zihan, Malu Zhang#, Jibin Wu, Jiadong Wang, and Haizhou Li. Multi-tone phase coding of interaural time difference for sound source localization with spiking neural networks[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 2656-2670. [13]Zhang, Malu, Xiaoling Luo, Yi Chen, Jibin Wu, Ammar Belatreche, Zihan Pan, Hong Qu, and Haizhou Li. An efficient threshold-driven aggregate-label learning algorithm for multimodal information processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 592-602. [14]Zhang, Malu, Hong Qu, Ammar Belatreche, Yi Chen, and Zhang Yi. A highly effective and robust membrane potential-driven supervised learning method for spiking neurons[J]. IEEE transactions on neural networks and learning systems, 2019, 30(1): 123-137. [15]Zhang, Malu, Jibin Wu, Ammar Belatreche, Zihan Pan, Xiurui Xie, Yansong Chua, Guoqi Li, Hong Qu, and Haizhou Li. Supervised learning in spiking neural networks with synaptic delay-weight plasticity[J]. Neurocomputing, 2020, 409: 103-118. [16]Zhang, Malu, Hong Qu, Xiurui Xie, and Jürgen Kurths. Supervised learning in spiking neural networks with noise-threshold[J]. Neurocomputing, 2017, 219: 333-349. 会议论文: [1]Qiu, Xuerui, Malu Zhang*, Jieyuan Zhang, Wenjie Wei, Honglin Cao, Junsheng Guo, Rui-Jie Zhu, Yimeng Shan, Yang Yang and Haizhou Li. Quantized Spike-driven Transformer. International Conference on Learning Representations,2025. [2]Wei, Wenjie, Malu Zhang*, Zijian Zhou, Ammar Belatreche, Yimeng Shan, Yu Liang, Honglin Cao, Jieyuan Zhang and Haizhou Li. QP-SNN: Quantized and Pruned Spiking Neural Networks. International Conference on Learning Representations,2025. [3]Wang, Shuai, Malu Zhang*, Dehao Zhang, Ammar Belatreche, Yichen Xiao, Yu Liang, Yimeng Shan, Qian Sun, Enqi Zhang, and Yang Yang. Spiking Vision Transformer with Saccadic Attention. International Conference on Learning Representations,2025. [4]Liang, Yu, Wenjie Wei, Ammar Belatreche, Honglin Cao, Zijian Zhou, Shuai Wang, Malu Zhang*, Yang Yang. Towards Accurate Binary Spiking Neural Networks: Learning with Adaptive Gradient Modulation Mechanism. Proceedings of the AAAI conference on artificial intelligence, 2025. [5]Zeng, DingYi, Yuchen Wang, Honglin Cao, Wanlong Liu, Yichen Xiao, ChengzhuoLu, Wenyu Chen, Malu Zhang*, Guoqing Wang, Yang Yang. Leveraging Asynchronous Spiking Neural Networks for Ultra Efficient Event-Based Visual Processing. Proceedings of the AAAI conference on artificial intelligence, 2025. [6]Zhang, Dehao, Shuai Wang, Ammar Belatreche, Wenjie Wei, Yichen Xiao, Haorui Zheng, Zijian Zhou, Malu Zhang* and Yang Yang. Spike-based Neuromorphic Model for Sound Source Localization. The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. [7]Wang, Jiadong, Zexu Pan, Malu Zhang*, Robby T Tan and Haizhou Li. Restoring Speaking Lips from Occlusion for Audio-Visual Speech Recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(17): 19144-19152. [8]Zhang, Chen, Luis Fernando D'Haro, Yiming Chen, Malu Zhang* and Haizhou Li. A Comprehensive Analysis of the Effectiveness of Large Language Models as Automatic Dialogue Evaluators. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(17): 19515-19524. [9]Wei, Wenjie, Yu Liang, Ammar Belatreche, Yichen Xiao, Honglin Cao, Zhenbang Renand, Guoqing Wang, Malu Zhang*, and Yang Yang. Q-snns: Quantized spiking neural networks. Proceedings of the 32nd ACM International Conference on Multimedia, 2024. [10]Jin, Yeying, Xin Li, Jiadong Wang, Yan Zhang and Malu Zhang*. Raindrop Clarity: A Dual-Focused Dataset for Day and Night Raindrop Removal. European Conference on Computer Vision, 2024. [11]Wei, Wenjie, Malu Zhang*, Hong Qu, Ammar Belatreche, Jian Zhang, and Hong Chen. Temporal-coded spiking neural networks with dynamic firing threshold: Learning with event-driven backpropagation[C]. Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023: 10552-10562. [12]Wang, Yuchen, Kexin Shi, Chengzhuo Lu, Yuguo Liu, Malu Zhang*, and Hong Qu. Spatial-temporal self-attention for asynchronous spiking neural networks[C]. Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23. 2023, 8: 3085-3093. [13]Zhang, Malu, Jibin Wu, Yansong Chua, Xiaoling Luo, Zihan Pan, Dan Liu, and Haizhou Li. MPD-AL: An efficient membrane potential driven aggregate-label learning algorithm for spiking neurons[C]. Proceedings of the AAAI conference on artificial intelligence. 2019, 33(01): 1327-1334.

专业研究方向:
专业名称 研究领域/方向 招生类别
081200计算机科学与技术 01计算理论,02机器智能与模式识别,06云计算与大数据处理 博士学术学位
085400电子信息 01“计算机科学与技术”研究组,03“计算机科学与技术”研究组(非全) 博士专业学位
081200计算机科学与技术 01计算理论,02机器智能与模式识别,06云计算与大数据处理 硕士学术学位


学院列表
01  信息与通信工程学院
02  电子科学与工程学院
03  材料与能源学院
04  机械与电气工程学院
05  光电科学与工程学院
06  自动化工程学院
07  资源与环境学院
08  计算机科学与工程学院(网络空间安全学院)
09  信息与软件工程学院(示范性软件学院)
10  航空航天学院
11  数学科学学院
12  物理学院
13  医学院
14  生命科学与技术学院
15  经济与管理学院
16  公共管理学院
17  外国语学院
18  马克思主义学院
21  基础与前沿研究院
22  通信抗干扰全国重点实验室
23  电子科学技术研究院
28  电子科技大学(深圳)高等研究院
31  集成电路科学与工程学院(示范性微电子学院)
90  智能计算研究院