电子科学与工程学院


 
导师代码: 11989
导师姓名: 彭波
性    别:
特    称:
职    称: 教授
学    位: 博士
属    性: 专职
电子邮件: bo_peng@uestc.edu.cn

学术经历:   工作履历 2015. 4—至今 电子科技大学 电子科学与工程学院 教授 2014.1—2015. 3 新加坡国立大学 先进二维材料与石墨烯研究中心 研究员 2010.6—2013.12 新加坡南洋理工大学 物理与应用物理系 研究员 教育背景 2005.9—2010.6 中国科学院理化技术研究所(北京) 物理化学 博士 2001.9—2005.7 兰州大学 (“985”和“211”) 化学 本科

个人简介:   随着大数据、人工智能的迅猛发展,全球产生的数据总量正以年均50%的速度急剧增长,对新一代信息技术提出了更高的要求,要求更加高速度、集成化、低功耗、低成本。光子芯片是支撑信息高速处理、传输和存储的重要新兴技术。本课题针围绕片上异质异构集成磁光调制器、非易失存储器、超高速光电探测器,重点开展铁磁二维材料、二维材料异质结物性研究与性能调控及其在光电子、光互联等方面的新型器件的应用开发。详见主页:https://www.x-mol.com/groups/Bo_Peng 主要研究方向如下: 1. 铁磁二维材料自旋调控研究 Ferromagnetism, refers to a permanent magnetic moment without applying any external magnetic field when the temperature is below a critical value-Curie temperature (Tc). Through the ages, the three-dimensional (3D) ferromagnetic with high Tc can be easily achieved. However, according to the Mermin-Wanger theorem, the finite-range exchange interaction cannot preserve the long-range magnetic orders in 2D system which can be destroyed by the thermal fluctuation at nonzero temperature. Cutting through the limitation of Mermin-Wanger theorem requires strong enough magnetic anisotropy overcoming the thermal fluctuation like the way the 2D Ising model are. Thus, introducing magnetic anisotropywill make the way to long-range magnetic order at finite temperature and 2D ferromagnetism possible. The spin states and spin-wave can be harnessed to carve out a path to realize modulator, spintronic and memory devices. 2. 铁磁、铁电二维材料CVD生长 At this stage, the key questions that are being addressed are that 2D ferromagnetic and ferroelectric materials can be reliably larger-scally synthesized with high quality and higher Tc. Once, the constraints are overcomed, the potential for technological impact is enormou. 3. 智能超表面 Plasmonic arrays have attracted great interest due to their fantastic properties in controlling electromagnetic waves in the applications of light engineering, imaging, and holography. Metasurfaces have been used to control the wavefronts of circularly and linearly polarized light in the visible and near-infrared regions, in which the aligned nanostructures, such as metallic nanorods, V-shapes, and silicon (Si) cut-wire resonators generate abrupt phase changes along the surface. However, it is still a major challenge to realize large-scale active plasmonic arrays operation in the visible optical frequency.

科研项目:  

研究成果:   2020 44. Li Qi #; Zhao Xiaoxu #; Deng Longjiang; Shi Zhongtai; Liu Sheng; Wei Qilin; Zhang Linbo; Cheng Yingchun*; Zhang Li; Lu Haipeng; Gao Weibo; Huang Wei; Qiu Cheng-Wei; Xiang Gang; Pennycook John Stephen; Xiong Qihua; Loh Kian Ping*; Peng Bo*; Enhanced Valley Zeeman Splitting in Fe-Doped Monolayer MoS2, ACS Nano, 2020,DOI:10.1021/acsnano.0c00291(封面论文) https://doi.org/10.1021/acsnano.0c00291 43. Wang Yaqian; Deng Longjiang; Wei Qilin; Wan Yi; Liu Zhen; Lu Xiao; Li Yue; Bi Lei; Zhang Li; Lu Haipeng; Chen Haiyan; Zhou Peiheng; Zhang Linbo; Cheng Yingchun*; Zhao Xiaoxu*; Ye Yu; Huang Wei; Pennycook John Stephen; Loh Kian Ping; Bo Peng*; Spin-Valley Locking Effect in Defect States of Monolayer MoS2, Nano Letter, 2020, DOI: 10.1021/acs.nanolett.0c00138. https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.0c00138 42. Shi Zhongtai; Muhammad Shoaib; Deng Longjiang; Liu Zhen; Bi Lei; Zhang Linbo; Zhang Li; Zhou Peiheng; Chen Haiyan; Lu Haipeng; Xie Jianliang; Li Dong; Pan Anlian*; Peng Bo*; Magnetic-brightening and control of dark exciton in CsPbBr3 perovskite, Science China Materials, 2020, DOI: 10.1007/s40843-019-1245-1 https://link.springer.com/article/10.1007/s40843-019-1245-1 41. Guo Kai; Deng Bowen; Liu Zhen; Gao Chaofeng; Shi Zhongtai; Bi Lei; Zhang Li; Lu Haipeng; Zhou Peiheng; Zhang Linbo*; Cheng Yingchun; Peng Bo*; Layer dependence of stacking order in nonencapsulated few-layer CrI3, Science China Materials, 2020, 63(3): 413-420 (封面论文) https://link.springer.com/article/10.1007/s40843-019-1214-y 40. Gu Pingfan#; Tan Qinghai#; Wan Yi#; Li Ziling; Peng Yuxuan; Lai Jiawei; Ma Junchao; Yao Xiaohan; Yang Shiqi; Yuan Kai; Sun Dong; Peng Bo; Zhang Jun; Ye Yu*, Photoluminescent Quantum Interference in a van der Waals Magnet Preserved by Symmetry Breaking, ACS Nano, 2020 14 (1), 1003-1010 https://pubs.acs.org/doi/10.1021/acsnano.9b08336 2015-2019 39. Chen Jie; Zhang Qing*; Shi Jia; Zhang Shuai; Du Wenna; Mi Yang; Shang Qiuyu; Liu Pengchong; Sui Xinyu; Wu Xianxin; Wang Rui; Peng Bo, Zhong Haizheng; Xing Guichuan; Qiu Xiaohui; Sum Tze Chien*; Liu Xinfeng*; Room temperature continuous-wave excited biexciton emission in perovskite nanoplatelets via plasmonic nonlinear fano resonance, Communications Physics, 2019, 2(1), 80 https://doi.org/10.1038/s42005-019-0178-9 38. Li, Y.; Li, J.; Huang, T.; Huang, F.; Qin, J.; Bi, L.; Xie, J.; Deng, L.; Peng, B.* Active Macroscale Visible Plasmonic Nanorod Self-Assembled Monolayer. Photon. Res. 2018, 6, 409-416. https://doi.org/10.1364/PRJ.6.000409 37. Peng, B.*; Li, Q.; Liang, X.; Song, P.; Li, J.; He, K.; Fu, D.; Li, Y.; Shen, C.; Wang, H.; Wang, C.; Liu, T.; Zhang, L.; Lu, H.; Wang, X.; Zhao, J.; Xie, J.; Wu, M.; Bi, L.; Deng, L., et al. Valley Polarization of Trions and Magnetoresistance in Heterostructures of Mos2 and Yttrium Iron Garnet. ACS Nano 2017, 11, 12257-12265. https://doi.org/10.1021/acsnano.7b05743 36. Peng, B.*; Li, J.; Li, Q.; Li, Y.; Zhu, H.; Zhang, L.; Wang, X.; Bi, L.; Lu, H.; Xie, J.; Deng, L.; Xu, Q.; Loh, K., Bose-Einstein oscillators and the excitation mechanism of free excitons in 2D layered organic-inorganic perovskites. RSC Advances 2017, 7, 18366-18373. https://doi.org/10.1039/C7RA02308A 35. Peng, B.; Yu, G.; Zhao, Y.; Xu, Q.; Xing, G.; Liu, X.; Fu, D.; Liu, B.; Tan, J. R. S.; Tang, W., Lu, H.; Xie, J.; Deng, L.; Sum, T. C.; Loh, K. P. Achieving Ultrafast Hole Transfer at the Monolayer MoS2 and Ch3nh3pbi3 Perovskite Interface by Defect Engineering. ACS Nano 2016, 10, 6383-6391. https://doi.org/10.1021/acsnano.6b02845 34. Peng, B.; Li, Y.; Li, J.; Bi, L.; Lu, H.; Xie, J.; Ren, X.; Cai, Y.; Wang, N.; Meng, X.; Deng, L. J.; Guo, Z. Monodisperse Light Color Nanoparticle Ink toward Chromatic Electrophoretic Displays. Nanoscale 2016, 8, 10917 https://doi.org/10.1039/C6NR02524B 33. Peng, B.; Yu, G.; Liu, X.; Liu, B.; Liang, X.; Bi, L.; Deng, L.; Sum, T. C.; Loh, K. P. Ultrafast charge transfer in MoS 2 /WSe 2 p–n Heterojunction. 2D Materials 2016, 3, 025020. https://doi.org/10.1088/2053-1583/3/2/025020 32. Peng, B*.; Lu, X.; Mutlugun, E.; Chen, S.; Huan, C. H. A.; Yu, S. F.; Demir, H. V.; Xiong, Q., Exciton Dynamics in Luminescent Carbon Nanodots: Electron-Hole Exchange Interaction. Nano Research, 2016, 9,549-559. https://doi.org/10.1007/s12274-015-0936-2 31. Peng, B.; Ang, P. K.; Loh, K. P., Two-Dimensional Dichalcogenides for Light-Harvesting Applications. Nano Today 2015, 10, 128-137. https://doi.org/10.1016/j.nantod.2015.01.007 2008-2014 30. Peng, B.; Li, Z.; Mutlugun, E.; Hernandez Martinez, P. L.; Li, D.; Zhang, Q.; Gao, Y.; Demir, H. V.; Xiong, Q., Quantum Dots on Vertically Aligned Gold Nanorod Monolayer: Plasmon Enhanced Fluorescence. Nanoscale 2014, 6, 5592-5598. https://doi.org/10.1039/c3nr06341k 29. Peng, B.; Li, G.; Li, D.; Dodson, S.; Zhang, Q.; Zhang, J.; Lee, Y. H.; Demir, H. V.; Yi Ling, X.; Xiong, Q., Vertically Aligned Gold Nanorod Monolayer on Arbitrary Substrates: Self-Assembly and Femtomolar Detection of Food Contaminants. ACS Nano 2013, 7, 5993-6000.(ESI Top 1%) https://doi.org/10.1021/nn401685p 28. Peng, B.; Zhang, Q.; Liu, X. F.; Ji, Y.; Demir, H. V.; Huan, C. H. A.; Sum, T. C.; Xiong, Q. H., Fluorophore-Doped Core-Multishell Spherical Plasmonic Nanocavities: Resonant Energy Transfer toward a Loss Compensation. ACS Nano 2012, 6, 6250-6259. https://doi.org/10.1021/nn301716q 27. Peng, B.; Tan, L. F.; Chen, D.; Meng, X. W.; Tang, F. Q., Programming Surface Morphology of Tio2 Hollow Spheres and Their Superhydrophilic Films. ACS Applied Materials & Interfaces 2012, 4, 96-101. https://doi.org/10.1021/am2009986 26. Peng, B.; Chen, D.; Deng, Z. T.; Wen, T.; Meng, X. W.; Ren, X. L.; Ren, J.; Tang, F. Q., Surfactant-Free Self-Assembly of Nanocrystals into Ellipsoidal Architectures. Chemphyschem 2010, 11, 3744-3751. https://doi.org/10.1002/cphc.201000458 25. Peng, B.; Tang, F. Q.; Chen, D.; Ren, M. L.; Meng, X. W.; Ren, J., Preparation of Ps/Tio2/Uf Multilayer Core-Shell Hybrid Microspheres with High Stability. Journal of Colloid and Interface Science 2009, 329, 62-66. https://doi.org/10.1016/j.jcis.2008.09.069 24. Peng, B.; Meng, X. W.; Tang, F. Q.; Ren, X. L.; Chen, D.; Ren, J., General Synthesis and Optical Properties of Monodisperse Multifunctional Metal-Ion-Doped Tio2 Hollow Particles. Journal of Physical Chemistry C 2009, 113, 20240-20245. https://doi.org/10.1021/jp906937e 23. Peng, B.; Deng, Z. T.; Tang, F. Q.; Chen, D.; Ren, X. L.; Ren, J., Self-Healing Self-Assembly of Aspect-Ratio-Tunable Chloroplast-Shaped Architectures. Crystal Growth & Design 2009, 9, 4745-4751. https://doi.org/10.1021/cg9006026 22. Zhao, M.; Zhang, J.; Gao, N.; Song, P.; Bosman, M.; Peng, B.; Sun, B.; Qiu, C.-W.; Xu, Q.-H.; Bao, Q., Loh, K. P. Actively Tunable Visible Surface Plasmons in Bi2te3 and Their Energy-Harvesting Applications. Adv. Mater. 2016, 28, 3138-3144. https://doi.org/10.1002/adma.201506367 21. Liu, Z.; Yang, Z.; Peng, B.; Cao, C.; Zhang, C.; You, H.; Xiong, Q.; Li, Z.; Fang, J., Highly Sensitive, Uniform, and Reproducible Surface-Enhanced Raman Spectroscopy from Hollow Au-Ag Alloy Nanourchins. Adv. Mater. 2014, 26, 2431-2439. https://doi.org/10.1002/adma.201305106 20. Wen, X.; Li, G.; Zhang, J.; Zhang, Q.; Peng, B.; Wong, L. M.; Wang, S.; Xiong, Q., Transparent Free-Standing Metamaterials and Their Applications in Surface-Enhanced Raman Scattering. Nanoscale 2014, 6, 132-139. https://doi.org/10.1039/c3nr04012g 19. Xu, X.; Kyaw, A. K. K.; Peng, B.; Du, Q.; Hong, L.; Demir, H. V.; Wong, T. K. S.; Xiong, Q.; Sun, X. W., Enhanced Efficiency of Solution-Processed Small-Molecule Solar Cells Upon Incorporation of Gold Nanospheres and Nanorods into Organic Layers. Chem. Commun. 2014, 50, 4451-4454. https://doi.org/10.1039/c4cc01322k 18. Xu, X.; Du, Q.; Peng, B.; Xiong, Q.; Hong, L.; Demir, H. V.; Wong, T. K. S.; Ko Kyaw, A. K.; Sun, X. W., Effect of Shell Thickness on Small-Molecule Solar Cells Enhanced by Dual Plasmonic Gold-Silica Nanorods. Applied Physics Letters 2014, 105, 113306. https://doi.org/10.1063/1.4896516 17. Chen, S. F.; Peng, B.; Cheng, F.; Mei, Y.; Kong, M.; Hao, J. Y.; Zhang, R.; Xiong, Q. H.; Wang, L. H.; Huang, W., Plasmon-Enhanced Polymer Photovoltaic Cells Based on Large Aspect Ratio Gold Nanorods and the Related Working Mechanism. Appl. Phys. Lett. 2014, 104, 213903 https://doi.org/10.1063/1.4880575 16. Chen, S.; Peng, B.; Lu, F.; Mei, Y.; Cheng, F.; Deng, L.; Xiong, Q.; Wang, L.; Sun, X.; Huang, W., Scattering or Photoluminescence Major Mechanism Exploration on Performance Enhancement in P3ht-Based Polymer Solar Cells with Nayf4:2% Er3+, 18% Yb3+ Upconverting Nanocrystals. Adv. Optical Mater. 2014, 2, 442-449. https://doi.org/10.1002/adom.201300522 15. Zhu, Y.; Zhou, Y.; Utama, M. I. B.; de la Mata, M.; Zhao, Y. Y.; Zhang, Q.; Peng, B.; Magen, C.; Arbiol, J.; Xiong, Q. H., Solution Phase Van Der Waals Epitaxy of Zno Wire Arrays. Nanoscale 2013, 5, 7242-7249. https://doi.org/10.1039/c3nr01984e 14. Xu, X. Y.; Kyaw, A. K. K.; Peng, B.; Zhao, D. W.; Wong, T. K. S.; Xiong, Q. H.; Sun, X. W.; Heeger, A. J., A Plasmonically Enhanced Polymer Solar Cell with Gold-Silica Core-Shell Nanorods. Org. Electron. 2013, 14, 2360-2368. https://doi.org/10.1016/j.orgel.2013.05.038 13. Zhang, Q.; Zhang, J.; Utama, M. I. B.; Peng, B.; de la Mata, M.; Arbiol, J.; Xiong, Q. H., Exciton-Phonon Coupling in Individual Znte Nanorods Studied by Resonant Raman Spectroscopy. Physical Review B 2012, 85. https://doi.org/10.1103/PhysRevB.85.085418 12. Utama, M. I. B.; Belarre, F. J.; Magen, C.; Peng, B.; Arbiol, J.; Xiong, Q. H., Incommensurate Van Der Waals Epitaxy of Nanowire Arrays: A Case Study with Zno on Muscovite Mica Substrates. Nano. Lett. 2012, 12, 2146-2152. https://doi.org/10.1021/nl300554t 11. Pan, J.; Utama, M. I. B.; Zhang, Q.; Liu, X. F.; Peng, B.; Wong, L. M.; Sum, T. C.; Wang, S. J.; Xiong, Q. H., Composition-Tunable Vertically Aligned Cdsxse1-X Nanowire Arrays Via Van Der Waals Epitaxy: Investigation of Optical Properties and Photocatalytic Behavior. Adv. Mater. 2012, 24, 4151-4156. https://doi.org/10.1002/adma.201104996 10. de la Mata, M.; Magen, C.; Gazquez, J.; Utama, M. I. B.; Heiss, M.; Lopatin, S.; Furtmayr, F.; Fernandez-Rojas, C. J.; Peng, B.; Morante, J. R., et al., Polarity Assignment in Znte, Gaas, Zno, and Gan-Aln Nanowires from Direct Dumbbell Analysis. Nano. Lett. 2012, 12, 2579-2586. https://doi.org/10.1021/nl300840q 9. Gao, F. G.; Li, L. L.; Liu, T. L.; Hao, N. J.; Liu, H. Y.; Tan, L. F.; Li, H. B.; Huang, X. L.; Peng, B.; Yan, C. M., et al., Doxorubicin Loaded Silica Nanorattles Actively Seek Tumors with Improved Anti-Tumor Effects. Nanoscale 2012, 4, 3365-3372. https://doi.org/10.1039/c2nr12094a 8. Zhao, Y. Y.; Chua, K. T. E.; Gan, C. K.; Zhang, J.; Peng, B.; Peng, Z. P.; Xiong, Q. H., Phonons in Bi2s3 Nanostructures: Raman Scattering and First-Principles Studies. Physical Review B 2011, 84. https://doi.org/10.1103/PhysRevB.84.205330 7. Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H., Raman Spectroscopy of Few-Quintuple Layer Topological Insulator Bi2se3 Nanoplatelets. Nano. Lett. 2011, 11, 2407-2414. https://doi.org/10.1021/nl200773n 6. Xu, X. L.; Peng, B.; Li, D. H.; Zhang, J.; Wong, L. M.; Zhang, Q.; Wang, S. J.; Xiong, Q. H., Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing. Nano. Lett. 2011, 11, 3232-3238. https://doi.org/10.1021/nl2014982 5. Utama, M. I. B.; Peng, Z. P.; Chen, R.; Peng, B.; Xu, X. L.; Dong, Y. J.; Wong, L. M.; Wang, S. J.; Sun, H. D.; Xiong, Q. H., Vertically Aligned Cadmium Chalcogenide Nanowire Arrays on Muscovite Mica: A Demonstration of Epitaxial Growth Strategy. Nano. Lett. 2011, 11, 3051-3057. https://doi.org/10.1021/nl1034495 4. Chen, R.; Utama, M. I. B.; Peng, Z. P.; Peng, B.; Xiong, Q. H.; Sun, H. D., Excitonic Properties and near-Infrared Coherent Random Lasing in Vertically Aligned Cdse Nanowires. Adv. Mater. 2011, 23, 1404-1408. https://doi.org/10.1002/adma.201003820 3. Meng, X. W.; Tang, F. Q.; Peng, B.; Ren, J., Monodisperse Hollow Tricolor Pigment Particles for Electronic Paper. Nanoscale Research Letters 2010, 5, 174-179. https://doi.org/10.1007/s11671-009-9461-0 2. Deng, Z. T.; Peng, B.; Chen, D.; Tang, F. Q.; Muscat, A. J., A New Route to Self-Assembled Tin Dioxide Nanospheres: Fabrication and Characterization. Langmuir 2008, 24, 11089-11095. https://doi.org/10.1021/la800984g 1. Deng, Z. T.; Chen, D.; Peng, B.; Tang, F. Q., From Bulk Metal Bi to Two-Dimensional Well-Crystallized Biox (X = Cl, Br) Micro- and Nanostructures: Synthesis and Characterization. Crystal Growth & Design 2008, 8, 2995-3003. https://doi.org/10.1021/cg800116m

专业研究方向:  
专业名称 研究方向 招生类别
080900电子科学与技术 04电子信息材料与元器件(电磁调控,微纳磁电器件,微系统集成) 博士
080900电子科学与技术 04电子信息材料与元器件(电磁调控,微纳磁电器件,微系统集成) 硕士


学院列表
01  信息与通信工程学院
02  电子科学与工程学院
03  材料与能源学院
04  机械与电气工程学院
05  光电科学与工程学院
06  自动化工程学院
07  资源与环境学院
08  计算机科学与工程学院
09  信息与软件工程学院
10  航空航天学院
11  数学科学学院
12  物理学院
13  医学院
14  生命科学与技术学院
15  经济与管理学院
16  公共管理学院
17  外国语学院
18  马克思主义学院
21  基础与前沿研究院
22  通信抗干扰技术国家级重点实验室
23  电子科学技术研究院
24  广东信息工程研究院
69  国际教育学院