数学科学学院
|
|
|
|
导师代码: |
11399
|
导师姓名: |
李良
|
性 别: |
男 |
特 称: |
|
职 称: |
教授
|
学 位: |
理学博士学位
|
属 性: |
专职 |
电子邮件: |
plum_liliang@uestc.edu.cn
|
|
|
学术经历:
|
|
2009年12月电子科技大学获博士学位,后留校工作至今。期间2010年6月-2010年8月,比利时布鲁塞尔自由大学,访问学者(比利时自然基金资助);2010年11月-2012年2月,法国国家信息与自动化研究所(Inria),博士后;2015年7月-2015年8月,丹麦科技大学,访问学者(自然基金资助);2016年3月-2017年2月,Inria,访问学者(留学基金委资助)。
|
|
个人简介:
|
|
主要从事高性能数值计算及在计算电磁学中的应用研究, 研究兴趣包括: 间断Galerkin有限元, 代数多重网格, 区域分解,数据科学,不完全分解, 并行计算. 2004年6月毕业于电子科技大学信息与计算科学专业, 同年保送入电子科技大学计算数学专业, 从事大型线性系统的高性能算法研究. 2007年3月获理学硕士学位, 2009年12月获理学博士学位, 博士论文题目为“大型线性方程组求解技术及在计算电磁学中的应用研究”. 毕业后留校任教. 2010年6月至8月访问比利时数值代数专家Notay教授, 进行代数多重网格算法求解Helmholtz方程的合作研究. 2010年11月-2012年2月在法国INRIA进行间断Galerkin方法求解时谐Maxwell方程的研究工作. 曾参与国家973计划前期研究专项课题(排名第2)、国家自然科学基金项目、教育部科学技术研究重点项目、高等学校博士点专项科研基金项目等.
|
|
科研项目:
|
|
间断Galerkin方法及在电磁计算中的应用研究,国家自然科学基金,2014.01-2016.12,主持
代数多重网格及在电磁计算中的应用研究,国家自然科学基金(天元基金),2011.01-2011.12,主持
智慧公共法律服务平台关键技术研究与示范,四川省科技计划项目(重点研发计划),2020.01-2021.12,主持
微波单载波信号****算法研究,华为,2014.12-2015.12,主持
**矩阵****计算技术合作项目,华为,2021.06-2022.08,主持
**视觉识别模型优化压缩及测试验证服务,南方电网,2021.11-2022.02,主持
微电子系统时谐Maxwell方程快速求解算法,国家十三五挑战专题项目,2019.11-2020.12,主研(2)
基于****信道预测与移动性增强算法研究与应用项目,华为,2019.11-2020.11,主研(2)
***的数值模拟与仿真,JW科技委,2017.01-2017.12,主研(2)
|
|
研究成果:
|
|
[1] Liang Li, Ting-Zhu Huang, Xing-Ping Liu. Modified Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems. Numerical Linear Algebra with Applications, 2007, 14(3): 217-235.
[2] Liang Li, Ting-Zhu Huang and Xing-Ping Liu. Asymmetric Hermitian and skew-Hermitian splitting methods for positive definite linear systems. Computers & Mathematics with Applications, 2007, 54: 147-159.
[3] Ting-Zhu Huang, Liang Li. Relaxed forms of BBK algorithm and FBP algorithm for symmetric indefinite linear systems. Computers & Mathematics with Applications, 2008, 55: 801–807.
[4] Liang Li, Ting-Zhu Huang, Zhi-Gang Ren. A preconditioned COCG method for solving complex symmetric linear systems arising from scattering problems. J. Electromagnetic Waves and Appl., 2008, 22: 2023-2034.
[5] Liang Li, Ting-Zhu Huang, Yan-Fei Jing and Yong Zhang. Application of the incomplete Cholesky factorization preconditioned Krylov subspace method to the vector finite element method for 3-D electromagnetic scattering problems. Computer Physics Communications, 2010, 181: 271-276.
[6] Liang Li, Ting-Zhu Huang, Guang-Hui Cheng, Yan-Fei Jing, Zhi-Gang Ren and Hou-Biao Li. Solution to 3-D electromagnetic problems discretized by a hybrid FEM/MOM method. Computer Physics Communications, 2013, 184: 73-78.
[7] Liang Li, Stéphane Lanteri and Ronan Perrussel. Numerical investigation of a high order hybridizable discontinuous Galerkin method for 2d time-harmonic Maxwell's equations. COMPEL, 2013, 32(3): 1112-1138.
[8] Liang Li, Stéphane Lanteri and Ronan Perrussel, A hybridizable discontinuous Galerkin method combined to a Schwarz algorithm for the solution of 3d time-harmonic Maxwell's equation, Journal of Computational Physics, 2014, 256(1): 563-581.
[9] Liang Li, Ting-Zhu Huang, Yan-Fei Jing and Zhi-Gang Ren, Effective preconditioning through minimum degree ordering interleaved with incomplete factorization, Journal of Computational and Applied Mathematics, 2015, 279: 225-232.
[10] Liang Li, Stéphane Lanteri and Ronan Perrussel, A class of locally well-posed hybridizable discontinuous Galerkin methods for the solution of time-harmonic Maxwell’s equations. Computer Physics Communications, 2015, 192: 23-31.
[11] Yu-Xuan He, Liang Li, Stéphane Lanteri, Ting-Zhu Huang, Optimized Schwarz algorithms for solving time-harmonic Maxwell’s equations discretized by a hybridizable discontinuous Galerkin method, Computer Physics Communications, 2016, 200: 176-181.
[12] Liang Li, Stéphane Lanteri, N. Asger Mortensen and Martijn Wubs, A hybridizable discontinuous Galerkin method for solving nonlocal optical response models. Computer Physics Communications, 2017, 219: 99-107.
[13] Lan Zhu, Ting-Zhu Huang*, Liang Li*, A hybrid-mesh hybridizable discontinuous Galerkin method for solving the time-harmonic Maxwell’s equations, Applied Mathematics Letters, 2017, 68: 109-116.
[14] Kun Li, Ting-Zhu Huang, Liang Li*, Ste?phane Lanteri, Li Xu and Bin Li, A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation, IEEE Transactions on Antennas and Propagation, 2018.1.1, 66(1): 242-254.
[15] Kun Li, Ting-Zhu Huang, Liang Li* and Ste?phane Lanteri, A reduced-order DG formulation based on POD method for the time-domain Maxwell’s equations in dispersive media, Journal of Computational and Applied Mathematics, 2018, 339: 249-266.
[16] Kun Li, Ting-Zhu Huang, Liang Li* and Ste?phane Lanteri, POD-based model order reduction with an adaptive snapshot selection for a discontinuous Galerkin approximation of the time-domain Maxwell's equations, Journal of Computational Physics, 2019, 396: 106-128.
[17] Kun Li, Ting-Zhu Huang, Liang Li* and Ste?phane Lanteri, A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics, Applied Mathematics and Computation, 2019, 358: 128-145.
[18] Kun Li, Ting-Zhu Huang, Liang Li* and Ste?phane Lanteri, Non-intrusive reduced-order modeling of parameterized electromagnetic scattering problems using cubic spline interpolation, Journal of Scientific Computing, 2021, 87:52, 29pages.
[19] Ping-Ping Wang, Liang Li*, Guang-Hui Cheng, Low-rank tensor completion with sparse regularization in a transformed domain, Numerical Linear Algebra with Applications, 2021, e2387, 23 pages.
[20] Ying Zhao, Liang Li*, Stéphane Lanteri, Jonathan Viquerat, Dynamic metasurface control using Deep Reinforcement Learning, Mathematics and Computers in Simulation, 2022, 197:377–395.
[21] Shiliang Wu, Liang Li*, New modulus-based matrix splitting methods for implicit complementarity problem, Numerical Algorithms, 2022, 1-20.
|
|
专业研究方向:
|
专业名称 |
研究领域/方向 |
招生类别 |
070100数学 |
02数值代数与科学计算及应用 |
博士学术学位 |
070100数学 |
02数值代数与科学计算及应用,09机器学习的数学理论及应用 |
硕士学术学位 |
|
|
|
|
|