材料与能源学院


 
导师代码: 11382
导师姓名: 周爱军
性    别:
特    称:
职    称: 副教授
学    位: 工学博士学位
属    性: 专职
电子邮件: zhouaj @ uestc.edu.cn

学术经历:   2000.9–2004.7 浙江大学 材料科学与工程专业 本科学士学位
2004.9–2010.3 浙江大学 材料科学与工程专业 工学博士
2007.8–2009.9 德国航空航天研究中心(DLR)材料研究所 联合培养博士
2010.4–2012.7 电子科技大学 微电子与固体电子学院 讲师
2012.8–2017.12 电子科技大学 微电子与固体电子学院 副教授
2013.7–2014.7 香港中文大学 机械与自动化工程学院 访问学者
2017.9 – 2018.9 美国德州大学奥斯汀分校机械工程学院John B. Goodenough教授课题组 访问学者
2018.1至今 电子科技大学 材料与能源学院 副教授

个人简介:   科研主要涉及新能源材料及器件,包括锂离子、钠离子、钾离子电池,薄膜材料及薄膜锂离子电池,热电材料及器件等。先后承担国家自然科学基金青年和面上项目、四川省国际合作项目、中国博士后基金、中央高校业务费项目等科研项目。在Adv. Energy Mater.、Small、J. Mater. Chem. A、 ACS Appl. Mater. Interfaces、J. Power Sources等期刊发表SCI论文50余篇,申请发明专利10项,授权专利2项,多次在国内外大型学术会议上做学术报告。目前为中国材料学会会员、国际热电协会会员、中国化学会会员,担任Energy Storage Materials, Scientific Report, ACS Sustainable Chemistry & Engineering, ACS Applied Materials & Interfaces, ACS Applied Energy Materials, Journal of Alloys and compounds, Applied Surface Science, Ceramics International, Composites Science and Technology, Electrochemistry Communications, Journal of Applied Physics, Journal of Electronic Materials, Renewable Energy, Solar Energy, Thin Solid Films等学术期刊审稿人。

科研项目:   (主持)国家自然科学基金面上项目(52172184),碱金属位调控对锰铁基普鲁士蓝正极材料的结构改性机理和应用
(主持)企业横向项目(200680),储能型钠离子电池电极材料及电池技术
(主持)四川省国际科技合作与交流项目(2017HH0089),高性能薄膜温差电池及材料关键技术研究
(主持)中央高校基本科研业务费-基础研究项目(ZYGX2015J027),环境热源微能量采集器件
(参与)横向科研项目(170198),基于金属锂负极的先进电池技术研究
(参与)中央高校基本科研业务费-基础研究项目(ZYGX2015J032),电磁超材料的非线性效应研究
(参与)四川省国际科技合作与交流项目(2015HH0033),高性能薄膜锂电池及材料的共同研发
(主持)国家自然科学基金青年基金(51102039),微型电子器件用MnSi1.7厚膜热电材料的可控制备和电声输运性能研究
(主持)中国博士后科学基金第四批特别资助项目(201104685),柔性CIGS薄膜太阳能电池光吸收层的低成本制备及电池性能研究
(主持)中国博士后科学基金第48批面上项目(20100481375),不锈钢柔性衬底铜铟镓硒薄膜太阳能电池研究
(主持)中央高校基本科研业务费-基础研究项目(ZYGX2010J033),基于微电子应用的薄膜热电材料及器件的开发
(主持)硅材料国家重点实验室开放课题(SKL2011-16),低成本单靶磁控溅射法制备CIGS薄膜及其太阳能电池的研究
(参与)国家自然科学基金课题(NSFC-50522203),高电导/低热beta-FeSi2基热电材料

研究成果:   [1] Q. Zhao, W. Wang, Y.-t. Li*, N. Wu, Y.-d. Guo, W.-j. Cheng, W.-w. Sun, J.-z. Li, A.-j. Zhou*, Ion-exchange surface modification enhances cycling stability and kinetics of sodium manganese hexacyanoferrate cathode in sodium-ion batteries, Electrochimica Acta, 2021, 390, 138842.
[2] A. Zhou*, W. Cheng, W. Wang, Q. Zhao, J. Xie*, W. Zhang*, H. Gao, L. Xue, J. Li, Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries, Advanced Energy Materials, 2020, 2000943.
[3] A. Zhou, Z. Xu, H. Gao, L. Xue, J. Li, J.B. Goodenough*, Size-, Water-, and Defect-Regulated Potassium Manganese Hexacyanoferrate with Superior Cycling Stability and Rate Capability for Low-Cost Sodium-Ion Batteries, Small, 2019, 1902420.
[4] X. Yao, Z. Xu, Z. Yao, W. Cheng, H. Gao, Q. Zhao, J. Li, A. Zhou*, Oxalate co-precipitation synthesis of LiNi0.6Co0.2Mn0.2O2 for low-cost and high-energy lithium-ion batteries, Materials Today Communications, 2019, 19, 262-270.
[5] A. Zhou*, W. Wang, Q. Liu, Y. Wang, X. Yao, F. Qing, E. Li, T. Yang, L. Zhang, J. Li*, Stable, fast and high-energy-density LiCoO2 cathode at high operation voltage enabled by glassy B2O3 modification, Journal of Power Sources, 2017, 362, 131-139.
[6] A.J. Zhou, Q. Liu, Y. Wang, W.H. Wang, X. Yao, W.T. Hu, L. Zhang, X.Q. Yu*, J.Z. Li*, H. Li, Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages, Journal of Materials Chemistry A, 2017, 5, 24361-24370.
[7] A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai, J. Li*, Sputtering TiO2 on LiCoO2 composite electrodes as a simple and effective coating to enhance high-voltage cathode performance, Journal of Power Sources, 2017, 346, 24-30.
[8] A. Zhou*, B. Yang, W. Wang, X. Dai, M. Zhao, J. Xue, M. Han, C. Fan, J. Li*, Enhanced reversibility and electrochemical performances of mechanically alloyed Cu3P achieved by Fe addition, RSC Advances, 2016, 6, 26800-26808.
[9] A. Zhou*, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan, J. Li*, Improved high-voltage and high-temperature electrochemical performances of LiCoO2 cathode by electrode sputter-coating with Li3PO4, Journal of Power Sources, 2016, 322, 10-16.
[10] A. Zhou*, W. Wang, X. Yao, B. Yang, J. Li, Q. Zhao, C. Wang, D. Xu, P. Ziolkowski*, E. Mueller, Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM), Applied Thermal Engineering, 2016, 107, 552-559.
[11] A. Zhou*, W. Wang, B. Yang, J. Li, Q. Zhao, Thermal conductivity study of micrometer-thick thermoelectric films by using three-omega methods, Applied Thermal Engineering, 2016, 98, 683-689.
[12] A. Zhou, X. Dai*, Y. Lu, Q. Wang, M. Fu, J. Li*, Enhanced interfacial kinetics and high-voltage/high-rate performance of LiCoO2 cathode by controlled sputter-coating with a nanoscale Li4Ti5O12 ionic conductor, ACS Applied Materials & Interfaces, 2016, 8, 34123-34131.
[13] X. Dai, A. Zhou*, J. Xu, Y. Lu, L. Wang, C. Fan, J. Li*, Extending the high-voltage capacity of LiCoO2 cathode by direct coating of the composite electrode with Li2CO3 via magnetron sputtering, The Journal of Physical Chemistry C, 2016, 120, 422-430.
[14] A. Zhou, Q. Fu, W. Zhang, B. Yang, J. Li, P. Ziolkowski, E. Mueller, D. Xu*, Enhancing the Thermoelectric Properties of the Electroplated Bi2Te3 Films by Tuning the Pulse Off-to-on Ratio, Electrochimica Acta, 2015, 178, 217-224.
[15] X. Dai, A. Zhou*, J. Xu, B. Yang, L. Wang, J. Li*, Superior Electrochemical Performance of LiCoO2 Electrodes Enabled by Conductive Al2O3-doped ZnO Coating via Magnetron Sputtering, Journal of Power Sources, 2015, 228, 114-122.
[16] X.Y. Dai, A.J. Zhou*, L.D. Feng, Y. Wang, J. Xu, J.Z. Li*, Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature, Thin Solid Films, 2014, 567, 64-71.
[17] A.J. Zhou*, L.D. Feng, W. Liu, X.Y. Dai, H.G. Cui, X.B. Zhao, J.Z. Li, Sequential Evaporation and Thermoelectric Transport Properties of Bi-Te Thin Films with Controllable Composition Journal of Electronic Materials, 2013, 42, 2184-2191.
[18] A. Zhou*, L. Feng, W. Liu, X. Dai, H. Cui, X. Zhao, J. Li, Performance evaluation of a silicide-based thermoelectric generator for power generation, Materials Science Forum, 2013, 743-744, 144-152.
[19] A.J. Zhou, D. Mei, X.G. Kong, X.H. Xu, L.D. Feng, X.Y. Dai, T. Gao, J.Z. Li*, One-step synthesis of Cu(In,Ga)Se-2 absorber layers by magnetron sputtering from a single quaternary target, Thin Solid Films, 2012, 520, 6068-6074.
[20] A.-J. Zhou*, H.-G. Cui, J.-Z. Li, X.-B. Zhao, Structure and Morphology of Induction-Melted Higher Manganese Silicide (in Chinese), Acta Physico-Chimica Sinica, 2011, 27, 2915-2919.
[21] A. Zhou, T. Zhu, X. Zhao*, E. Mueller, Grain size effect on the phase transformations of higher manganese silicide thermoelectric materials: An in situ energy dispersive x-ray diffraction study, Journal of Materials Research, 2011, 26, 1900-1906.
[22] A.J. Zhou, T.J. Zhu, X.B. Zhao*, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Improved Thermoelectric Performance of Higher Manganese Silicides with Ge Additions, Journal of Electronic Materials, 2010, 39, 2002-2007.
[23] A.J. Zhou, X.B. Zhao*, T.J. Zhu, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Microstructure and thermoelectric properties of SiGe-added higher manganese silicides, Materials Chemistry and Physics, 2010, 124, 1001-1005.
[24] A.J. Zhou, X.B. Zhao*, T.J. Zhu, T. Dasgupta, C. Stiewe, R. Hassdorf, E. Mueller, Mechanochemical decomposition of higher manganese suicides in the ball milling process, Intermetallics, 2010, 18, 2051-2056.
[25] A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, E. Mueller, Composites of Higher Manganese Silicides and Nanostructured Secondary Phases and Their Thermoelectric Properties, Journal of Electronic Materials, 2009, 38, 1072-1077.
[26] A.J. Zhou, T.J. Zhu, X.B. Zhao*, H.Y. Chen, E. Mueller, Fabrication and thermoelectric properties of perovskite-type oxide La1-xSrxCoO3 (x=0, 0.1), Journal of Alloys and Compounds, 2008, 449, 105-108.
[27] A.J. Zhou, T.J. Zhu, X.B. Zhao*, Thermoelectric properties of perovskite oxides La(1-x)Sr(x)CoO(3) prepared by polymerlized complex method, Journal of Materials Science, 2008, 43, 1520-1524.
[28] A.J. Zhou, T.J. Zhu, H.L. Ni, Q. Zhang, X.B. Zhao*, Preparation and transport properties of CeSi2/HMS thermoelectric composites, Journal of Alloys and Compounds, 2008, 455, 255-258.
[29] A.J. Zhou, T.J. Zhu, X.B. Zhao*, Thermoelectric properties of perovskite-type oxide La1-xSrxCoO3 (x=0, 0.1) prepared by solid state reactions, Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2006, 128, 174-178.

专业研究方向:  
专业名称 研究方向 招生类别
080500材料科学与工程 01电子功能材料及器件 硕士
080500材料科学与工程 02新能源材料与器件 硕士
080500材料科学与工程 03电子薄膜与集成器件 硕士


学院列表
01  信息与通信工程学院
02  电子科学与工程学院
03  材料与能源学院
04  机械与电气工程学院
05  光电科学与工程学院
06  自动化工程学院
07  资源与环境学院
08  计算机科学与工程学院
09  信息与软件工程学院
10  航空航天学院
11  数学科学学院
12  物理学院
13  医学院
14  生命科学与技术学院
15  经济与管理学院
16  公共管理学院
17  外国语学院
18  马克思主义学院
21  基础与前沿研究院
22  通信抗干扰技术国家级重点实验室
23  电子科学技术研究院
28  深圳高等研究院